Coverage for sparkle/configurator/configurator.py: 88%
83 statements
« prev ^ index » next coverage.py v7.6.4, created at 2024-11-05 14:48 +0000
« prev ^ index » next coverage.py v7.6.4, created at 2024-11-05 14:48 +0000
1#!/usr/bin/env python3
2# -*- coding: UTF-8 -*-
3"""Configurator class to use different algorithm configurators like SMAC."""
4from __future__ import annotations
5from abc import abstractmethod
6from typing import Callable
7import ast
8from statistics import mean
9import operator
10from pathlib import Path
12from runrunner import Runner, Run
13from sparkle.solver import Solver
14from sparkle.solver.validator import Validator
15from sparkle.instance import InstanceSet
16from sparkle.types import SparkleObjective
19class Configurator:
20 """Abstact class to use different configurators like SMAC."""
21 configurator_cli_path = Path(__file__).parent.resolve() / "configurator_cli.py"
23 def __init__(self: Configurator, validator: Validator, output_path: Path,
24 base_dir: Path, tmp_path: Path,
25 multi_objective_support: bool = False) -> None:
26 """Initialize Configurator.
28 Args:
29 validator: Validator object to validate configurations runs
30 output_path: Output directory of the Configurator.
31 objectives: The list of Sparkle Objectives the configurator has to
32 optimize.
33 base_dir: Where to execute the configuration
34 tmp_path: Path for the temporary files of the configurator, optional
35 multi_objective_support: Whether the configurator supports
36 multi objective optimization for solvers.
37 """
38 self.validator = validator
39 self.output_path = output_path
40 self.base_dir = base_dir
41 self.tmp_path = tmp_path
42 self.multiobjective = multi_objective_support
43 self.scenario = None
45 @property
46 def scenario_class(self: Configurator) -> ConfigurationScenario:
47 """Return the scenario class of the configurator."""
48 return ConfigurationScenario
50 @abstractmethod
51 def configure(self: Configurator,
52 scenario: ConfigurationScenario,
53 validate_after: bool = True,
54 sbatch_options: list[str] = [],
55 num_parallel_jobs: int = None,
56 base_dir: Path = None,
57 run_on: Runner = Runner.SLURM) -> Run:
58 """Start configuration job.
60 Args:
61 scenario: ConfigurationScenario to execute.
62 validate_after: Whether to validate the configuration on the training set
63 afterwards or not.
64 sbatch_options: List of slurm batch options to use
65 num_parallel_jobs: The maximum number of jobs to run in parallel
66 base_dir: The base_dir of RunRunner where the sbatch scripts will be placed
67 run_on: On which platform to run the jobs. Default: Slurm.
69 Returns:
70 A RunRunner Run object.
71 """
72 raise NotImplementedError
74 def get_optimal_configuration(
75 self: Configurator,
76 scenario: ConfigurationScenario,
77 aggregate_config: Callable = mean) -> tuple[float, str]:
78 """Returns optimal value and configuration string of solver on instance set."""
79 self.validator.out_dir = scenario.validation
80 results = self.validator.get_validation_results(
81 scenario.solver,
82 scenario.instance_set,
83 source_dir=scenario.validation,
84 subdir=Path())
85 # Group the results per configuration
86 objective = scenario.sparkle_objective
87 value_column = results[0].index(objective.name)
88 config_column = results[0].index("Configuration")
89 configurations = list(set(row[config_column] for row in results[1:]))
90 config_scores = []
91 for config in configurations:
92 values = [float(row[value_column])
93 for row in results[1:] if row[1] == config]
94 config_scores.append(aggregate_config(values))
96 comparison = operator.lt if objective.minimise else operator.gt
98 # Return optimal value
99 min_index = 0
100 current_optimal = config_scores[min_index]
101 for i, score in enumerate(config_scores):
102 if comparison(score, current_optimal):
103 min_index, current_optimal = i, score
105 # Return the optimal configuration dictionary as commandline args
106 config_str = configurations[min_index].strip(" ")
107 if config_str.startswith("{"):
108 config = ast.literal_eval(config_str)
109 config_str = " ".join([f"-{key} '{config[key]}'" for key in config])
110 return current_optimal, config_str
112 @staticmethod
113 def organise_output(output_source: Path, output_target: Path) -> None | str:
114 """Method to restructure and clean up after a single configurator call."""
115 raise NotImplementedError
117 def set_scenario_dirs(self: Configurator,
118 solver: Solver, instance_set: InstanceSet) -> None:
119 """Patching method to allow the rebuilding of configuration scenario."""
120 raise NotImplementedError
122 def get_status_from_logs(self: Configurator) -> None:
123 """Method to scan the log files of the configurator for warnings."""
124 raise NotImplementedError
127class ConfigurationScenario:
128 """Template class to handle a configuration scenarios."""
129 def __init__(self: ConfigurationScenario,
130 solver: Solver,
131 instance_set: InstanceSet,
132 sparkle_objectives: list[SparkleObjective],
133 parent_directory: Path)\
134 -> None:
135 """Initialize scenario paths and names.
137 Args:
138 solver: Solver that should be configured.
139 instance_set: Instances object for the scenario.
140 sparkle_objectives: Sparkle Objectives to optimize.
141 parent_directory: Directory in which the scenario should be placed.
142 """
143 self.solver = solver
144 self.instance_set = instance_set
145 self.sparkle_objectives = sparkle_objectives
146 self.name = f"{self.solver.name}_{self.instance_set.name}"
148 self.directory = parent_directory / self.name
149 self.scenario_file_path = self.directory / f"{self.name}_scenario.txt"
150 self.validation: Path = None
151 self.tmp: Path = None
152 self.results_directory: Path = None
154 def create_scenario(self: ConfigurationScenario, parent_directory: Path) -> None:
155 """Create scenario with solver and instances in the parent directory.
157 This prepares all the necessary subdirectories related to configuration.
159 Args:
160 parent_directory: Directory in which the scenario should be created.
161 """
162 raise NotImplementedError
164 def create_scenario_file(self: ConfigurationScenario) -> Path:
165 """Create a file with the configuration scenario.
167 Writes supplementary information to the target algorithm (algo =) as:
168 algo = {configurator_target} {solver_directory} {sparkle_objective}
169 """
170 raise NotImplementedError
172 def serialize(self: ConfigurationScenario) -> dict:
173 """Serialize the configuration scenario."""
174 raise NotImplementedError
176 @classmethod
177 def find_scenario(cls: ConfigurationScenario,
178 directory: Path,
179 solver: Solver,
180 instance_set: InstanceSet) -> ConfigurationScenario | None:
181 """Resolve a scenario from a directory and Solver / Training set."""
182 scenario_name = f"{solver.name}_{instance_set.name}"
183 path = directory / f"{scenario_name}" / f"{scenario_name}_scenario.txt"
184 if not path.exists():
185 return None
186 return cls.from_file(path)
188 @staticmethod
189 def from_file(scenario_file: Path) -> ConfigurationScenario:
190 """Reads scenario file and initalises ConfigurationScenario."""
191 raise NotImplementedError