Coverage for sparkle/CLI/construct_portfolio_selector.py: 72%

107 statements  

« prev     ^ index     » next       coverage.py v7.8.0, created at 2025-04-03 10:42 +0000

1#!/usr/bin/env python3 

2"""Sparkle command to construct a portfolio selector.""" 

3import sys 

4import argparse 

5from pathlib import Path 

6 

7import runrunner as rrr 

8from runrunner.base import Runner 

9 

10from sparkle.solver import Selector 

11from sparkle.platform.settings_objects import SettingState 

12from sparkle.structures import PerformanceDataFrame, FeatureDataFrame 

13from sparkle.types import resolve_objective 

14from sparkle.CLI.help import global_variables as gv 

15from sparkle.CLI.help import logging as sl 

16from sparkle.CLI.help import argparse_custom as ac 

17from sparkle.CLI.help.reporting_scenario import Scenario 

18from sparkle.CLI.initialise import check_for_initialise 

19 

20 

21def parser_function() -> argparse.ArgumentParser: 

22 """Define the command line arguments.""" 

23 parser = argparse.ArgumentParser( 

24 description="Command to construct a portfolio selector over all known features " 

25 "solver performances.") 

26 parser.add_argument(*ac.RecomputePortfolioSelectorArgument.names, 

27 **ac.RecomputePortfolioSelectorArgument.kwargs) 

28 parser.add_argument(*ac.ObjectiveArgument.names, 

29 **ac.ObjectiveArgument.kwargs) 

30 parser.add_argument(*ac.SelectorAblationArgument.names, 

31 **ac.SelectorAblationArgument.kwargs) 

32 parser.add_argument(*ac.RunOnArgument.names, 

33 **ac.RunOnArgument.kwargs) 

34 parser.add_argument(*ac.SettingsFileArgument.names, 

35 **ac.SettingsFileArgument.kwargs) 

36 return parser 

37 

38 

39def judge_exist_remaining_jobs(feature_data_csv: Path, 

40 performance_data_csv: Path) -> bool: 

41 """Return whether there are remaining feature or performance computation jobs.""" 

42 feature_data = FeatureDataFrame(feature_data_csv) 

43 performance_data = PerformanceDataFrame(performance_data_csv) 

44 missing_features = feature_data.has_missing_vectors() 

45 missing_performances = performance_data.has_missing_values 

46 if missing_features: 

47 print("There remain unperformed feature computation jobs!") 

48 if missing_performances: 

49 print("There remain unperformed performance computation jobs!") 

50 if missing_features or missing_performances: 

51 print("Please first execute all unperformed jobs before constructing Sparkle " 

52 "portfolio selector") 

53 print("Sparkle portfolio selector is not successfully constructed!") 

54 sys.exit(-1) 

55 

56 

57def main(argv: list[str]) -> None: 

58 """Main method of construct portfolio selector.""" 

59 # Log command call 

60 sl.log_command(sys.argv) 

61 check_for_initialise() 

62 

63 # Define command line arguments 

64 parser = parser_function() 

65 

66 # Process command line arguments 

67 args = parser.parse_args(argv) 

68 flag_recompute_portfolio = args.recompute_portfolio_selector 

69 solver_ablation = args.solver_ablation 

70 

71 if ac.set_by_user(args, "settings_file"): 

72 gv.settings().read_settings_ini( 

73 args.settings_file, SettingState.CMD_LINE 

74 ) # Do first, so other command line options can override settings from the file 

75 if ac.set_by_user(args, "objective"): 

76 objective = resolve_objective(args.objective) 

77 else: 

78 objective = gv.settings().get_general_sparkle_objectives()[0] 

79 print("WARNING: No objective specified, defaulting to first objective from " 

80 f"settings ({objective}).") 

81 if args.run_on is not None: 

82 gv.settings().set_run_on( 

83 args.run_on.value, SettingState.CMD_LINE) 

84 run_on = gv.settings().get_run_on() 

85 

86 print("Start constructing Sparkle portfolio selector ...") 

87 selector = Selector(gv.settings().get_selection_class(), 

88 gv.settings().get_selection_model()) 

89 

90 judge_exist_remaining_jobs( 

91 gv.settings().DEFAULT_feature_data_path, 

92 gv.settings().DEFAULT_performance_data_path) 

93 

94 cutoff_time = gv.settings().get_general_target_cutoff_time() 

95 

96 performance_data = PerformanceDataFrame(gv.settings().DEFAULT_performance_data_path) 

97 feature_data = FeatureDataFrame(gv.settings().DEFAULT_feature_data_path) 

98 

99 if feature_data.has_missing_value(): 

100 print("WARNING: Missing values in the feature data, will be imputed as the mean " 

101 "value of all other non-missing values! Imputing all missing values...") 

102 feature_data.impute_missing_values() 

103 

104 # TODO: Allow user to specify subsets of data to be used 

105 

106 # Selector is named after the solvers it can predict, sort for permutation invariance 

107 solvers = sorted([s.name for s in gv.settings().DEFAULT_solver_dir.iterdir()]) 

108 selection_scenario_path =\ 

109 gv.settings().DEFAULT_selection_output / selector.name / "_".join(solvers) 

110 

111 # Update latest scenario 

112 gv.latest_scenario().set_selection_scenario_path(selection_scenario_path) 

113 gv.latest_scenario().set_latest_scenario(Scenario.SELECTION) 

114 # Set to default to overwrite possible old path 

115 gv.latest_scenario().set_selection_test_case_directory() 

116 

117 selector_path = selection_scenario_path / "portfolio_selector" 

118 sbatch_options = gv.settings().get_slurm_extra_options(as_args=True) 

119 if selector_path.exists() and not flag_recompute_portfolio: 

120 print("Portfolio selector already exists. Set the recompute flag to re-create.") 

121 sys.exit() 

122 

123 selector_path.parent.mkdir(exist_ok=True, parents=True) 

124 slurm_prepend = gv.settings().get_slurm_job_prepend() 

125 selector_run = selector.construct(selector_path, 

126 performance_data, 

127 feature_data, 

128 objective, 

129 cutoff_time, 

130 run_on=run_on, 

131 sbatch_options=sbatch_options, 

132 slurm_prepend=slurm_prepend, 

133 base_dir=sl.caller_log_dir) 

134 if run_on == Runner.LOCAL: 

135 print("Sparkle portfolio selector constructed!") 

136 else: 

137 print("Sparkle portfolio selector constructor running...") 

138 

139 dependencies = [selector_run] 

140 if solver_ablation: 

141 for solver in performance_data.solvers: 

142 solver_name = Path(solver).name 

143 ablate_solver_dir = selection_scenario_path / f"ablate_{solver_name}" 

144 ablate_solver_selector = ablate_solver_dir / "portfolio_selector" 

145 if (ablate_solver_selector.exists() and not flag_recompute_portfolio): 

146 print(f"Portfolio selector without {solver_name} already exists. " 

147 "Set the recompute flag to re-create.") 

148 continue 

149 ablate_solver_dir.mkdir(exist_ok=True, parents=True) 

150 ablated_performance_data = performance_data.clone() 

151 ablated_performance_data.remove_solver(solver) 

152 ablated_run = selector.construct(ablate_solver_selector, 

153 ablated_performance_data, 

154 feature_data, 

155 objective, 

156 cutoff_time, 

157 run_on=run_on, 

158 sbatch_options=sbatch_options, 

159 slurm_prepend=slurm_prepend, 

160 base_dir=sl.caller_log_dir) 

161 dependencies.append(ablated_run) 

162 if run_on == Runner.LOCAL: 

163 print(f"Portfolio selector without {solver_name} constructed!") 

164 else: 

165 print(f"Portfolio selector without {solver_name} constructor running...") 

166 

167 # Compute the marginal contribution 

168 with_actual = "--actual" if solver_ablation else "" 

169 cmd = (f"python3 sparkle/CLI/compute_marginal_contribution.py --perfect " 

170 f"{with_actual} {ac.ObjectivesArgument.names[0]} {objective}") 

171 solver_names = ", ".join([Path(s).name for s in performance_data.solvers]) 

172 marginal_contribution = rrr.add_to_queue( 

173 runner=run_on, 

174 cmd=cmd, 

175 name=f"Marginal Contribution computation: {solver_names}", 

176 base_dir=sl.caller_log_dir, 

177 dependencies=dependencies, 

178 sbatch_options=sbatch_options, 

179 prepend=gv.settings().get_slurm_job_prepend()) 

180 dependencies.append(marginal_contribution) 

181 if run_on == Runner.LOCAL: 

182 marginal_contribution.wait() 

183 print("Selector marginal contribution computing done!") 

184 else: 

185 print(f"Running selector construction. Waiting for Slurm job(s) with id(s): " 

186 f"{', '.join([d.run_id for d in dependencies])}") 

187 

188 # Write used settings to file 

189 gv.settings().write_used_settings() 

190 # Write used scenario to file 

191 gv.latest_scenario().write_scenario_ini() 

192 sys.exit(0) 

193 

194 

195if __name__ == "__main__": 

196 main(sys.argv[1:])