Coverage for sparkle/CLI/help/system_status.py: 62%
32 statements
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-07 15:22 +0000
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-07 15:22 +0000
1#!/usr/bin/env python3
2# -*- coding: UTF-8 -*-
3"""Helper functions to inform about Sparkle's system status."""
4from pathlib import Path
6from sparkle.structures import FeatureDataFrame, PerformanceDataFrame
9def print_sparkle_list(objects: list[any], type: str, details: bool = False) -> None:
10 """Print a list of sparkle objects.
12 Args:
13 objects: The objects to print
14 type: The name of the object type
15 details: Indicating if output should be detailed
16 """
17 print(f"\nCurrently Sparkle has {len(objects)} {type}(s)"
18 + (":" if details else ""))
20 if details:
21 for i, object in enumerate(objects):
22 print(f"[{i + 1}]: {type}: {Path(object).name}")
25def print_feature_computation_jobs(feature_data_csv: Path,
26 verbose: bool = False) -> None:
27 """Print a list of remaining feature computation jobs.
29 Args:
30 feature_data_csv: Path to the feature data csv
31 verbose: Indicating, if output should be verbose
32 """
33 if not feature_data_csv.exists():
34 print("\nNo feature data found, cannot determine remaining jobs.")
36 feature_data = FeatureDataFrame(feature_data_csv)
37 jobs = feature_data.remaining_jobs()
39 print(f"\nCurrently Sparkle has {len(jobs)} remaining feature computation "
40 "jobs that need to be performed before creating an algorithm selector"
41 + (":" if verbose else ""))
43 if verbose:
44 for i, job in enumerate(jobs):
45 print(f"[{i + 1}]: Extractor: {Path(job[1]).name}, Group: {job[2]}, "
46 f"Instance: {Path(job[0]).name}")
47 print()
50def print_performance_computation_jobs(performance_data_csv_path: Path,
51 verbose: bool = False) -> None:
52 """Print a list of remaining performance computation jobs.
54 Args:
55 performance_data_csv_path: Path to the performance data csv
56 verbose: Indicating, if output should be verbose
57 """
58 if not performance_data_csv_path.exists():
59 print("\nNo performance data found, cannot determine remaining jobs.")
60 return
61 performance_data_csv = PerformanceDataFrame(performance_data_csv_path)
62 jobs = performance_data_csv.remaining_jobs()
63 total_job_num = sum([len(jobs[instance]) for instance in jobs.keys()])
65 print(f"\nCurrently Sparkle has {total_job_num} remaining performance computation"
66 " jobs that need to be performed before creating an algorithm selector"
67 + (":" if verbose else ""))
69 if verbose:
70 i = 0
71 for instance in jobs.keys():
72 for extractor in jobs[instance]:
73 print(f"[{i + 1}]: Solver: "
74 f"{Path(extractor).name}, Instance: "
75 f"{Path(instance).name}")
76 i += 1
78 print()