Coverage for sparkle/solver/extractor.py: 57%

65 statements  

« prev     ^ index     » next       coverage.py v7.8.0, created at 2025-04-03 10:42 +0000

1"""Methods regarding feature extractors.""" 

2from __future__ import annotations 

3from pathlib import Path 

4import ast 

5import subprocess 

6from sparkle.types import SparkleCallable, SolverStatus 

7from sparkle.structures import FeatureDataFrame 

8from sparkle.tools import RunSolver 

9 

10 

11class Extractor(SparkleCallable): 

12 """Extractor base class for extracting features from instances.""" 

13 wrapper = "sparkle_extractor_wrapper.py" 

14 

15 def __init__(self: Extractor, 

16 directory: Path, 

17 runsolver_exec: Path = None, 

18 raw_output_directory: Path = None, 

19 ) -> None: 

20 """Initialize solver. 

21 

22 Args: 

23 directory: Directory of the solver. 

24 runsolver_exec: Path to the runsolver executable. 

25 By default, runsolver in directory. 

26 raw_output_directory: Directory where solver will write its raw output. 

27 Defaults to directory / tmp 

28 """ 

29 super().__init__(directory, runsolver_exec, raw_output_directory) 

30 self._features = None 

31 self._feature_groups = None 

32 self._groupwise_computation = None 

33 

34 @property 

35 def features(self: Extractor) -> list[tuple[str, str]]: 

36 """Determines the features of the extractor.""" 

37 if self._features is None: 

38 extractor_process = subprocess.run( 

39 [self.directory / Extractor.wrapper, "-features"], capture_output=True) 

40 self._features = ast.literal_eval(extractor_process.stdout.decode()) 

41 return self._features 

42 

43 @property 

44 def feature_groups(self: Extractor) -> list[str]: 

45 """Returns the various feature groups the Extractor has.""" 

46 if self._feature_groups is None: 

47 self._feature_groups = list(set([group for group, _ in self.features])) 

48 return self._feature_groups 

49 

50 @property 

51 def output_dimension(self: Extractor) -> int: 

52 """The size of the output vector of the extractor.""" 

53 return len(self.features) 

54 

55 @property 

56 def groupwise_computation(self: Extractor) -> bool: 

57 """Determines if you can call the extractor per group for parallelisation.""" 

58 if self._groupwise_computation is None: 

59 extractor_help = subprocess.run([self.directory / Extractor.wrapper, "-h"], 

60 capture_output=True) 

61 # Not the cleanest / most precise way to determine this 

62 self._groupwise_computation =\ 

63 "-feature_group" in extractor_help.stdout.decode() 

64 return self._groupwise_computation 

65 

66 def build_cmd(self: Extractor, 

67 instance: Path | list[Path], 

68 feature_group: str = None, 

69 output_file: Path = None, 

70 cutoff_time: int = None, 

71 log_dir: Path = None, 

72 ) -> list[str]: 

73 """Builds a command line string seperated by space. 

74 

75 Args: 

76 instance: The instance to run on 

77 feature_group: The optional feature group to run the extractor for. 

78 outputfile: Optional file to write the output to. 

79 runsolver_args: The arguments for runsolver. If not present, 

80 will run the extractor without runsolver. 

81 

82 Returns: 

83 The command seperated per item in the list. 

84 """ 

85 cmd_list_extractor = [] 

86 if not isinstance(instance, list): 

87 instance = [instance] 

88 cmd_list_extractor = [f"{self.directory / Extractor.wrapper}", 

89 "-extractor_dir", f"{self.directory}/", 

90 "-instance_file"] + [str(file) for file in instance] 

91 if feature_group is not None: 

92 cmd_list_extractor += ["-feature_group", feature_group] 

93 if output_file is not None: 

94 cmd_list_extractor += ["-output_file", str(output_file)] 

95 if cutoff_time is not None: 

96 # Extractor handles output file itself 

97 return RunSolver.wrap_command(self.runsolver_exec, 

98 cmd_list_extractor, 

99 cutoff_time, 

100 log_dir, 

101 log_name_base=self.name, 

102 raw_results_file=False) 

103 return cmd_list_extractor 

104 

105 def run(self: Extractor, 

106 instance: Path | list[Path], 

107 feature_group: str = None, 

108 output_file: Path = None, 

109 cutoff_time: int = None, 

110 log_dir: Path = None) -> list | None: 

111 """Runs an extractor job with Runrunner. 

112 

113 Args: 

114 extractor_path: Path to the executable 

115 instance: Path to the instance to run on 

116 feature_group: The feature group to compute. Must be supported by the 

117 extractor to use. 

118 output_file: Target output. If None, piped to the RunRunner job. 

119 cutoff_time: CPU cutoff time in seconds 

120 log_dir: Directory to write logs. Defaults to self.raw_output_directory. 

121 

122 Returns: 

123 The features or None if an output file is used, or features can not be found. 

124 """ 

125 if log_dir is None: 

126 log_dir = self.raw_output_directory 

127 if feature_group is not None and not self.groupwise_computation: 

128 # This extractor cannot handle groups, compute all features 

129 feature_group = None 

130 cmd_extractor = self.build_cmd( 

131 instance, feature_group, output_file, cutoff_time, log_dir) 

132 extractor = subprocess.run(cmd_extractor, capture_output=True) 

133 if output_file is None: 

134 try: 

135 features = ast.literal_eval( 

136 extractor.stdout.decode().split(maxsplit=1)[1]) 

137 return features 

138 except Exception: 

139 return None 

140 return None 

141 

142 def get_feature_vector(self: Extractor, 

143 result: Path, 

144 runsolver_values: Path = None) -> list[str]: 

145 """Extracts feature vector from an output file. 

146 

147 Args: 

148 result: The raw output of the extractor 

149 runsolver_values: The output of runsolver. 

150 

151 Returns: 

152 A list of features. Vector of missing values upon failure. 

153 """ 

154 if result.exists() and RunSolver.get_status(runsolver_values, 

155 None) != SolverStatus.TIMEOUT: 

156 feature_values = ast.literal_eval(result.read_text()) 

157 return [str(value) for _, _, value in feature_values] 

158 return [FeatureDataFrame.missing_value] * self.output_dimension