Coverage for sparkle/platform/output/selection_output.py: 98%

45 statements  

« prev     ^ index     » next       coverage.py v7.6.10, created at 2025-01-07 15:22 +0000

1#!/usr/bin/env python3 

2"""Sparkle class to organise configuration output.""" 

3 

4from __future__ import annotations 

5 

6from sparkle.structures import PerformanceDataFrame, FeatureDataFrame 

7from sparkle.platform import generate_report_for_selection as sgfs 

8from sparkle.types.objective import SparkleObjective 

9from sparkle.instance import InstanceSet 

10from sparkle.platform.output.structures import SelectionPerformance, SelectionSolverData 

11 

12import json 

13from pathlib import Path 

14 

15 

16class SelectionOutput: 

17 """Class that collects selection data and outputs it a JSON format.""" 

18 

19 def __init__(self: SelectionOutput, selection_scenario: Path, 

20 train_data: PerformanceDataFrame, 

21 feature_data: FeatureDataFrame, 

22 training_instances: list[InstanceSet], 

23 test_instances: list[InstanceSet], 

24 objective: SparkleObjective, 

25 cutoff_time: int, 

26 output: Path) -> None: 

27 """Initialize SelectionOutput class. 

28 

29 Args: 

30 selection_scenario: Path to selection output directory 

31 train_data: The performance input data for the selector 

32 feature_data: Feature data created by extractor 

33 training_instances: The set of training instances 

34 test_instances: The set of test instances 

35 objective: The objective of the selector 

36 cutoff_time: The cutoff time 

37 penalised_time: The penalised time 

38 output: Path to the output directory 

39 """ 

40 if not output.is_file(): 

41 self.output = output / "selection.json" 

42 else: 

43 self.output = output 

44 if test_instances is not None and not isinstance(test_instances, list): 

45 test_instances = [test_instances] 

46 

47 self.training_instances = training_instances 

48 self.test_instances = test_instances 

49 self.cutoff_time = cutoff_time 

50 

51 self.objective = objective 

52 self.solver_data = self.get_solver_data(train_data, self.objective) 

53 # Collect marginal contribution data 

54 self.marginal_contribution_perfect = train_data.marginal_contribution(objective, 

55 sort=True) 

56 self.marginal_contribution_actual = \ 

57 sgfs.compute_selector_marginal_contribution(train_data, 

58 feature_data, 

59 selection_scenario, 

60 objective) 

61 

62 # Collect performance data 

63 portfolio_selector_performance_path = selection_scenario / "performance.csv" 

64 vbs_performance = objective.instance_aggregator( 

65 train_data.best_instance_performance(objective=objective.name)) 

66 self.performance_data = SelectionPerformance( 

67 portfolio_selector_performance_path, vbs_performance, self.objective) 

68 

69 def get_solver_data(self: SelectionOutput, 

70 train_data: PerformanceDataFrame, 

71 objective: SparkleObjective) -> SelectionSolverData: 

72 """Initalise SelectionSolverData object.""" 

73 solver_performance_ranking = train_data.get_solver_ranking(objective=objective) 

74 num_solvers = train_data.num_solvers 

75 return SelectionSolverData(solver_performance_ranking, 

76 num_solvers) 

77 

78 def serialize_solvers(self: SelectionOutput, 

79 sd: SelectionSolverData) -> dict: 

80 """Transform SelectionSolverData to dictionary format.""" 

81 return { 

82 "number_of_solvers": sd.num_solvers, 

83 "single_best_solver": sd.single_best_solver, 

84 "solver_ranking": [ 

85 { 

86 "solver_name": solver[0], 

87 "performance": solver[1] 

88 } 

89 for solver in sd.solver_performance_ranking 

90 ] 

91 } 

92 

93 def serialize_performance(self: SelectionOutput, 

94 sp: SelectionPerformance) -> dict: 

95 """Transform SelectionPerformance to dictionary format.""" 

96 return { 

97 "vbs_performance": sp.vbs_performance, 

98 "actual_performance": sp.actual_performance, 

99 "objective": self.objective.name, 

100 "metric": sp.metric 

101 } 

102 

103 def serialize_instances(self: SelectionOutput, 

104 instances: list[InstanceSet]) -> dict: 

105 """Transform Instances to dictionary format.""" 

106 return { 

107 "number_of_instance_sets": len(instances), 

108 "instance_sets": [ 

109 { 

110 "name": instance.name, 

111 "number_of_instances": instance.size 

112 } 

113 for instance in instances 

114 ] 

115 } 

116 

117 def serialize_contribution(self: SelectionOutput) -> dict: 

118 """Transform marginal contribution ranking to dictionary format.""" 

119 return { 

120 "marginal_contribution_actual": [ 

121 { 

122 "solver_name": ranking[0], 

123 "marginal_contribution": ranking[1], 

124 "best_performance": ranking[2] 

125 } 

126 for ranking in self.marginal_contribution_actual 

127 ], 

128 "marginal_contribution_perfect": [ 

129 { 

130 "solver_name": ranking[0], 

131 "marginal_contribution": ranking[1], 

132 "best_performance": ranking[2] 

133 } 

134 for ranking in self.marginal_contribution_perfect 

135 ] 

136 } 

137 

138 def serialize_settings(self: SelectionOutput) -> dict: 

139 """Transform settings to dictionary format.""" 

140 return { 

141 "cutoff_time": self.cutoff_time, 

142 } 

143 

144 def write_output(self: SelectionOutput) -> None: 

145 """Write data into a JSON file.""" 

146 test_data = self.serialize_instances(self.test_instances) if self.test_instances\ 

147 else None 

148 output_data = { 

149 "solvers": self.serialize_solvers(self.solver_data), 

150 "training_instances": self.serialize_instances(self.training_instances), 

151 "test_instances": test_data, 

152 "performance": self.serialize_performance(self.performance_data), 

153 "settings": self.serialize_settings(), 

154 "marginal_contribution": self.serialize_contribution() 

155 } 

156 

157 self.output.parent.mkdir(parents=True, exist_ok=True) 

158 with self.output.open("w") as f: 

159 json.dump(output_data, f, indent=4)