"""Class for Sparkle Objective and Performance."""
from __future__ import annotations
from enum import Enum
import typing
import numpy as np
from sparkle.types.status import SolverStatus
[docs]
class UseTime(str, Enum):
"""Enum describing what type of time to use."""
WALL_TIME = "WALL_TIME"
CPU_TIME = "CPU_TIME"
NO = "NO"
@classmethod
def _missing_(cls: UseTime, value: object) -> UseTime:
"""Return error use time."""
return UseTime.NO
[docs]
class SparkleObjective:
"""Objective for Sparkle specified by user."""
name: str
run_aggregator: typing.Callable
instance_aggregator: typing.Callable
solver_aggregator: typing.Callable
minimise: bool
post_process: typing.Callable
use_time: UseTime
metric: bool
def __init__(self: SparkleObjective,
name: str,
run_aggregator: typing.Callable = np.mean,
instance_aggregator: typing.Callable = np.mean,
solver_aggregator: typing.Callable = None,
minimise: bool = True,
post_process: typing.Callable = None,
use_time: UseTime = UseTime.NO,
metric: bool = False) -> None:
"""Create sparkle objective from string."""
self.name = name
self.run_aggregator: typing.Callable = run_aggregator
self.instance_aggregator: typing.Callable = instance_aggregator
if solver_aggregator is None:
solver_aggregator = np.min if minimise else np.max
self.solver_aggregator: typing.Callable = solver_aggregator
self.minimise: bool = minimise
self.post_process: typing.Callable = post_process
self.use_time: UseTime = use_time
self.metric = metric
def __str__(self: SparkleObjective) -> str:
"""Return a stringified version."""
return self.name
@property
def stem(self: SparkleObjective) -> str:
"""Return the stem of the objective name."""
return self.name.split(":")[0]
@property
def time(self: SparkleObjective) -> bool:
"""Return whether the objective is time based."""
return self.use_time != UseTime.NO
class PAR(SparkleObjective):
"""Penalised Averaged Runtime Objective for Sparkle."""
negative_status = {SolverStatus.CRASHED,
SolverStatus.KILLED,
SolverStatus.ERROR,
SolverStatus.TIMEOUT,
SolverStatus.WRONG}
def __init__(self: PAR, k: int = 10,
minimise: bool = True,
metric: bool = False) -> None:
"""Initialize PAR."""
self.k = k
if k <= 0:
raise ValueError("k must be greater than 0.")
def penalise(value: float, cutoff: float, status: SolverStatus) -> float:
"""Return penalised value."""
if status in PAR.negative_status or value > cutoff:
return cutoff * self.k
return value
super().__init__(f"PAR{k}",
minimise=minimise,
use_time=UseTime.CPU_TIME,
post_process=penalise,
metric=metric)