Skip to content

TAPS

taps_train_model(original_model, hardened_model, train_loader, val_loader=None, start_epoch=0, end_epoch=None, num_epochs=None, eps=0.3, eps_std=0.3, eps_schedule=(0, 20, 50), eps_schedule_unit='epoch', eps_scheduler_args=dict(), optimizer=None, lr_decay_schedule=(15, 25), lr_decay_factor=10, lr_decay_schedule_unit='epoch', n_classes=10, gradient_clip=None, l1_regularisation_weight=1e-05, shi_regularisation_weight=0.5, shi_reg_decay=True, gradient_expansion_alpha=5.0, taps_pgd_steps=20, taps_pgd_step_size=None, taps_pgd_restarts=1, taps_pgd_decay_factor=0.2, taps_pgd_decay_checkpoints=(5, 7), taps_gradient_link_thresh=0.5, taps_gradient_link_tolerance=1e-05, checkpoint_save_interval=10, results_path='./results', device='cuda')

Train a model using the TAPS (Training with Adversarial Perturbations and Smoothing) method.

Parameters:

Name Type Description Default
original_model Module

The original model to be trained.

required
hardened_model BoundedModule

The bounded model to be trained.

required
train_loader DataLoader

DataLoader for the training data.

required
val_loader DataLoader

DataLoader for the validation data. Defaults to None.

None
start_epoch int

Epoch to start training from. Defaults to 0.

0
end_epoch int

Epoch to prematurely end training at. Defaults to None.

None
num_epochs int

Number of epochs to train the model. Defaults to None.

None
eps float

Epsilon value for perturbation. Defaults to 0.3.

0.3
eps_std float

Standardised epsilon value. Defaults to 0.3.

0.3
eps_schedule tuple

Schedule for epsilon values. Defaults to (0, 20, 50).

(0, 20, 50)
eps_schedule_unit str

Unit for epsilon schedule ('epoch' or 'batch'). Defaults to 'epoch'.

'epoch'
eps_scheduler_args dict

Additional arguments for the epsilon scheduler. Defaults to dict().

dict()
optimizer Optimizer

Optimizer for training. Defaults to None.

None
lr_decay_schedule tuple

Schedule for learning rate decay. Defaults to (15, 25).

(15, 25)
lr_decay_factor float

Factor by which to decay the learning rate. Defaults to 10.

10
lr_decay_schedule_unit str

Unit for learning rate decay schedule ('epoch' or 'batch'). Defaults to 'epoch'.

'epoch'
n_classes int

Number of classes in the dataset. Defaults to 10.

10
gradient_clip float

Value for gradient clipping. Defaults to None.

None
l1_regularisation_weight float

Weight for L1 regularization. Defaults to 0.00001.

1e-05
shi_regularisation_weight float

Weight for SHI regularization. Defaults to 0.5.

0.5
shi_reg_decay bool

Whether to decay SHI regularization. Defaults to True.

True
gradient_expansion_alpha float

Alpha value for gradient expansion. Defaults to 5.

5.0
taps_pgd_steps int

Number of PGD steps for TAPS. Defaults to 20.

20
taps_pgd_step_size float

Step size for PGD in TAPS. Defaults to None.

None
taps_pgd_restarts int

Number of PGD restarts for TAPS. Defaults to 1.

1
taps_pgd_decay_factor float

Decay factor for PGD in TAPS. Defaults to 0.2.

0.2
taps_pgd_decay_checkpoints tuple

Checkpoints for PGD decay in TAPS. Defaults to (5, 7).

(5, 7)
taps_gradient_link_thresh float

Threshold for gradient linking in TAPS. Defaults to 0.5.

0.5
taps_gradient_link_tolerance float

Tolerance for gradient linking in TAPS. Defaults to 0.00001.

1e-05
start_epoch int

Starting epoch for training. Defaults to 0.

0
results_path str

Path to save training results. Defaults to "./results".

'./results'
checkpoint_save_interval int

Interval for saving checkpoints. Defaults to 10.

10
device str

Device to use for training ('cuda' or 'cpu'). Defaults to 'cuda'.

'cuda'

Returns:

Type Description
BoundedModule

The trained hardened model.

Source code in CTRAIN/train/certified/taps.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def taps_train_model(
    original_model,
    hardened_model,
    train_loader,
    val_loader=None,
    start_epoch=0,
    end_epoch=None,
    num_epochs=None,
    eps=0.3,
    eps_std=0.3,
    eps_schedule=(0, 20, 50),
    eps_schedule_unit="epoch",
    eps_scheduler_args=dict(),
    optimizer=None,
    lr_decay_schedule=(15, 25),
    lr_decay_factor=10,
    lr_decay_schedule_unit="epoch",
    n_classes=10,
    gradient_clip=None,
    l1_regularisation_weight=0.00001,
    shi_regularisation_weight=0.5,
    shi_reg_decay=True,
    gradient_expansion_alpha=5.0,
    taps_pgd_steps=20,
    taps_pgd_step_size=None,
    taps_pgd_restarts=1,
    taps_pgd_decay_factor=0.2,
    taps_pgd_decay_checkpoints=(5, 7),
    taps_gradient_link_thresh=0.5,
    taps_gradient_link_tolerance=0.00001,
    checkpoint_save_interval=10,
    results_path="./results",
    device="cuda",
):
    """
    Train a model using the TAPS (Training with Adversarial Perturbations and Smoothing) method.

    Args:
        original_model (torch.nn.Module): The original model to be trained.
        hardened_model (auto_LiRPA.BoundedModule): The bounded model to be trained.
        train_loader (torch.utils.data.DataLoader): DataLoader for the training data.
        val_loader (torch.utils.data.DataLoader, optional): DataLoader for the validation data. Defaults to None.
        start_epoch (int, optional): Epoch to start training from. Defaults to 0.
        end_epoch (int, optional): Epoch to prematurely end training at. Defaults to None.
        num_epochs (int, optional): Number of epochs to train the model. Defaults to None.
        eps (float, optional): Epsilon value for perturbation. Defaults to 0.3.
        eps_std (float, optional): Standardised epsilon value. Defaults to 0.3.
        eps_schedule (tuple, optional): Schedule for epsilon values. Defaults to (0, 20, 50).
        eps_schedule_unit (str, optional): Unit for epsilon schedule ('epoch' or 'batch'). Defaults to 'epoch'.
        eps_scheduler_args (dict, optional): Additional arguments for the epsilon scheduler. Defaults to dict().
        optimizer (torch.optim.Optimizer, optional): Optimizer for training. Defaults to None.
        lr_decay_schedule (tuple, optional): Schedule for learning rate decay. Defaults to (15, 25).
        lr_decay_factor (float, optional): Factor by which to decay the learning rate. Defaults to 10.
        lr_decay_schedule_unit (str, optional): Unit for learning rate decay schedule ('epoch' or 'batch'). Defaults to 'epoch'.
        n_classes (int, optional): Number of classes in the dataset. Defaults to 10.
        gradient_clip (float, optional): Value for gradient clipping. Defaults to None.
        l1_regularisation_weight (float, optional): Weight for L1 regularization. Defaults to 0.00001.
        shi_regularisation_weight (float, optional): Weight for SHI regularization. Defaults to 0.5.
        shi_reg_decay (bool, optional): Whether to decay SHI regularization. Defaults to True.
        gradient_expansion_alpha (float, optional): Alpha value for gradient expansion. Defaults to 5.
        taps_pgd_steps (int, optional): Number of PGD steps for TAPS. Defaults to 20.
        taps_pgd_step_size (float, optional): Step size for PGD in TAPS. Defaults to None.
        taps_pgd_restarts (int, optional): Number of PGD restarts for TAPS. Defaults to 1.
        taps_pgd_decay_factor (float, optional): Decay factor for PGD in TAPS. Defaults to 0.2.
        taps_pgd_decay_checkpoints (tuple, optional): Checkpoints for PGD decay in TAPS. Defaults to (5, 7).
        taps_gradient_link_thresh (float, optional): Threshold for gradient linking in TAPS. Defaults to 0.5.
        taps_gradient_link_tolerance (float, optional): Tolerance for gradient linking in TAPS. Defaults to 0.00001.
        start_epoch (int, optional): Starting epoch for training. Defaults to 0.
        results_path (str, optional): Path to save training results. Defaults to "./results".
        checkpoint_save_interval (int, optional): Interval for saving checkpoints. Defaults to 10.
        device (str, optional): Device to use for training ('cuda' or 'cpu'). Defaults to 'cuda'.

    Returns:
        (auto_LiRPA.BoundedModule): The trained hardened model.
    """
    if end_epoch is None:
        end_epoch = num_epochs

    criterion = nn.CrossEntropyLoss(reduction="none")
    if start_epoch == 0:
        ibp_init_shi(original_model, hardened_model)

    no_batches = 0
    cur_lr = optimizer.param_groups[-1]["lr"]

    # Important Change to Vanilla IBP: Schedule Eps smoothly
    eps_scheduler = SmoothedScheduler(
        num_epochs=num_epochs,
        eps=eps,
        mean=train_loader.mean,
        std=train_loader.std,
        eps_schedule_unit=eps_schedule_unit,
        eps_schedule=eps_schedule,
        batches_per_epoch=len(train_loader),
        start_epoch=start_epoch,
        **eps_scheduler_args,
    )

    for epoch in range(start_epoch, end_epoch):

        if start_epoch > epoch:
            continue

        cur_eps = eps_scheduler.get_cur_eps()

        epoch_nat_err = 0
        epoch_rob_err = 0

        if lr_decay_schedule_unit == "epoch":
            if epoch + 1 in lr_decay_schedule:
                print("LEARNING RATE DECAYED!")
                cur_lr = cur_lr * lr_decay_factor
                for g in optimizer.param_groups:
                    g["lr"] = cur_lr

        print(
            f"[{epoch + 1}/{num_epochs}]: eps {[channel_eps for channel_eps in cur_eps]}"
        )

        for block in hardened_model.bounded_blocks:
            block.train()

        running_loss = 0.0

        for batch_idx, (data, target) in enumerate(train_loader):

            cur_eps = eps_scheduler.get_cur_eps().reshape(-1, 1, 1)

            ptb = PerturbationLpNorm(
                eps=cur_eps,
                norm=np.inf,
                x_L=torch.clamp(data - cur_eps, train_loader.min, train_loader.max).to(
                    device
                ),
                x_U=torch.clamp(data + cur_eps, train_loader.min, train_loader.max).to(
                    device
                ),
            )

            if lr_decay_schedule_unit == "batch":
                if no_batches + 1 in lr_decay_schedule:
                    print("LEARNING RATE DECAYED!")
                    cur_lr = cur_lr * lr_decay_factor
                    for g in optimizer.param_groups:
                        g["lr"] = cur_lr

            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            clean_output = hardened_model(data)
            regular_err = torch.sum(
                torch.argmax(clean_output, dim=1) != target
            ).item() / data.size(0)
            epoch_nat_err += regular_err
            clean_loss = criterion(clean_output, target).mean()

            if eps_scheduler.get_cur_eps(normalise=False) == 0.0:
                loss = clean_loss
            elif eps_scheduler.get_cur_eps(normalise=False) != 0.0 and (
                eps_scheduler.get_cur_eps(normalise=False)
                != eps_scheduler.get_max_eps(normalise=False)
            ):
                reg_loss, robust_err = get_ibp_loss(
                    hardened_model=hardened_model,
                    ptb=ptb,
                    data=data,
                    target=target,
                    n_classes=n_classes,
                    criterion=criterion,
                    return_bounds=False,
                    return_stats=True,
                )

                loss_regularisers = get_shi_regulariser(
                    model=hardened_model,
                    ptb=ptb,
                    data=data,
                    target=target,
                    eps_scheduler=eps_scheduler,
                    n_classes=n_classes,
                    device=device,
                    included_regularisers=["relu", "tightness"],
                    verbose=False,
                    regularisation_decay=shi_reg_decay,
                )
                epoch_rob_err += robust_err
                loss_regularisers = shi_regularisation_weight * loss_regularisers
                loss = reg_loss + loss_regularisers

            elif eps_scheduler.get_cur_eps(
                normalise=False
            ) == eps_scheduler.get_max_eps(normalise=False):
                loss, robust_err = get_taps_loss(
                    original_model=original_model,
                    hardened_model=hardened_model,
                    bounded_blocks=hardened_model.bounded_blocks,
                    criterion=criterion,
                    data=data,
                    target=target,
                    n_classes=n_classes,
                    ptb=ptb,
                    device=device,
                    pgd_steps=taps_pgd_steps,
                    pgd_restarts=taps_pgd_restarts,
                    pgd_step_size=taps_pgd_step_size,
                    pgd_decay_checkpoints=taps_pgd_decay_checkpoints,
                    pgd_decay_factor=taps_pgd_decay_factor,
                    gradient_link_thresh=taps_gradient_link_thresh,
                    gradient_link_tolerance=taps_gradient_link_tolerance,
                    gradient_expansion_alpha=gradient_expansion_alpha,
                    propagation="IBP",
                    return_stats=True,
                )

                epoch_rob_err += robust_err
            else:
                assert False, "One option must be true!"

            if l1_regularisation_weight is not None:
                l1_regularisation = l1_regularisation_weight * get_l1_reg(
                    model=original_model, device=device
                )
                loss += l1_regularisation

            loss.backward()

            if gradient_clip is not None:
                nn.utils.clip_grad_value_(
                    hardened_model.parameters(), clip_value=gradient_clip
                )

            optimizer.step()

            running_loss += loss.item()
            eps_scheduler.batch_step()
            no_batches += 1

        train_acc_nat = 1 - epoch_nat_err / len(train_loader)
        train_acc_cert = 1 - epoch_rob_err / len(train_loader)

        print(
            f"Epoch [{epoch+1}/{num_epochs}], Train Loss: {running_loss/len(train_loader):.4f}"
        )
        print(f"\t Natural Acc. Train: {train_acc_nat:.4f}")
        print(f"\t Adv. Acc. Train: N/A")
        print(f"\t Certified Acc. Train: {train_acc_cert:.4f}")

        if results_path is not None and (epoch + 1) % checkpoint_save_interval == 0:
            save_checkpoint(
                hardened_model, optimizer, running_loss, epoch + 1, results_path
            )

    return hardened_model