crown_ibp
get_crown_ibp_loss(hardened_model, ptb, data, target, n_classes, criterion, beta, return_bounds=False, return_stats=True)
Compute the CROWN-IBP loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hardened_model
|
BoundedModule
|
The bounded model to be trained. |
required |
ptb
|
PerturbationLpNorm
|
The perturbation applied to the input data. |
required |
data
|
Tensor
|
The input data. |
required |
target
|
Tensor
|
The target labels. |
required |
n_classes
|
int
|
The number of classes in the classification task. |
required |
criterion
|
callable
|
The loss function to be used. |
required |
beta
|
float
|
The interpolation parameter between CROWN_IBP and IBP bounds. |
required |
return_bounds
|
bool
|
If True, return the lower bounds. Default is False. |
False
|
return_stats
|
bool
|
If True, return the robust error statistics. Default is True. |
True
|
Returns:
Type | Description |
---|---|
tuple
|
A tuple containing the certified loss. If return_bounds is True, the tuple also contains the lower bounds. If return_stats is True, the tuple also contains the robust error statistics. |
Source code in CTRAIN/train/certified/losses/crown_ibp.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|