TAPS
TAPSModelWrapper
Bases: CTRAINWrapper
Wrapper class for training models using TAPS method. For details, see Mao et al. (2023) Connecting Certified and Adversarial Training https://proceedings.neurips.cc/paper_files/paper/2023/file/e8b0c97b34fdaf58b2f48f8cca85e76a-Paper-Conference.pdf
Source code in CTRAIN/model_wrappers/taps_model_wrapper.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
__init__(model, input_shape, eps, num_epochs, train_eps_factor=1, optimizer_func=torch.optim.Adam, lr=0.0005, warm_up_epochs=1, ramp_up_epochs=70, lr_decay_factor=0.2, lr_decay_milestones=(80, 90), gradient_clip=10, l1_reg_weight=1e-06, shi_reg_weight=0.5, shi_reg_decay=True, pgd_steps=8, pgd_alpha=0.5, pgd_restarts=1, pgd_early_stopping=False, pgd_alpha_decay_factor=0.1, pgd_decay_steps=(4, 7), block_sizes=None, gradient_expansion_alpha=5, gradient_link_thresh=0.5, gradient_link_tol=1e-05, checkpoint_save_path=None, checkpoint_save_interval=10, bound_opts=dict(conv_mode='patches', relu='adaptive'), device=torch.device('cuda'))
Initializes the TAPSModelWrapper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The model to be trained. |
required |
input_shape
|
tuple
|
Shape of the input data. |
required |
eps
|
float
|
Epsilon value describing the perturbation the network should be certifiably robust against. |
required |
num_epochs
|
int
|
Number of epochs for training. |
required |
train_eps_factor
|
float
|
Factor for training epsilon. |
1
|
optimizer_func
|
Optimizer
|
Optimizer function. |
Adam
|
lr
|
float
|
Learning rate. |
0.0005
|
warm_up_epochs
|
int
|
Number of warm-up epochs, i.e. epochs where the model is trained on clean loss. |
1
|
ramp_up_epochs
|
int
|
Number of ramp-up epochs, i.e. epochs where the epsilon is gradually increased to the target train epsilon. |
70
|
lr_decay_factor
|
float
|
Learning rate decay factor. |
0.2
|
lr_decay_milestones
|
tuple
|
Milestones for learning rate decay. |
(80, 90)
|
gradient_clip
|
float
|
Gradient clipping value. |
10
|
l1_reg_weight
|
float
|
L1 regularization weight. |
1e-06
|
shi_reg_weight
|
float
|
SHI regularization weight. |
0.5
|
shi_reg_decay
|
bool
|
Whether to decay SHI regularization during the ramp up phase. |
True
|
pgd_steps
|
int
|
Number of PGD steps for TAPS loss calculation. |
8
|
pgd_alpha
|
float
|
PGD step size for TAPS loss calculation. |
0.5
|
pgd_restarts
|
int
|
Number of PGD restarts ffor TAPS loss calculation. |
1
|
pgd_early_stopping
|
bool
|
Whether to use early stopping in PGD for TAPS loss calculation. |
False
|
pgd_alpha_decay_factor
|
float
|
PGD alpha decay factor. |
0.1
|
pgd_decay_steps
|
tuple
|
Milestones for PGD alpha decay. |
(4, 7)
|
block_sizes
|
list
|
Sizes of blocks for STAPS. This is used to split up the network into feature extractor and classifier. These must sum up to the number of layers in the network. |
None
|
gradient_expansion_alpha
|
float
|
Alpha value for gradient expansion, i.e. the factor the STAPS gradient is multiplied by. |
5
|
gradient_link_thresh
|
float
|
Threshold for gradient link. |
0.5
|
gradient_link_tol
|
float
|
Tolerance for gradient link. |
1e-05
|
checkpoint_save_path
|
str
|
Path to save checkpoints. |
None
|
checkpoint_save_interval
|
int
|
Interval for saving checkpoints. |
10
|
bound_opts
|
dict
|
Options for bounding according to the auto_LiRPA documentation. |
dict(conv_mode='patches', relu='adaptive')
|
device
|
device
|
Device to run the training on. |
device('cuda')
|
Source code in CTRAIN/model_wrappers/taps_model_wrapper.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
_hpo_runner(config, seed, epochs, train_loader, val_loader, output_dir, cert_eval_samples=1000, include_nat_loss=True, include_adv_loss=True, include_cert_loss=True)
Function called during hyperparameter optimization (HPO) using SMAC3, returns the loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
dict
|
Configuration of hyperparameters. |
required |
seed
|
int
|
Seed used. |
required |
epochs
|
int
|
Number of epochs for training. |
required |
train_loader
|
DataLoader
|
DataLoader for training data. |
required |
val_loader
|
DataLoader
|
DataLoader for validation data. |
required |
output_dir
|
str
|
Directory to save output. |
required |
cert_eval_samples
|
int
|
Number of samples for certification evaluation. |
1000
|
include_nat_loss
|
bool
|
Whether to include natural loss into HPO loss. |
True
|
include_adv_loss
|
bool
|
Whether to include adversarial loss into HPO loss. |
True
|
include_cert_loss
|
bool
|
Whether to include certification loss into HPO loss. |
True
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
Loss and dictionary of accuracies that is saved as information to the run by SMAC3. |
Source code in CTRAIN/model_wrappers/taps_model_wrapper.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
train_model(train_loader, val_loader=None, start_epoch=0)
Trains the model using the TAPS method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_loader
|
DataLoader
|
DataLoader for training data. |
required |
val_loader
|
DataLoader
|
DataLoader for validation data. |
None
|
Returns:
Type | Description |
---|---|
BoundedModule
|
Trained model. |
Source code in CTRAIN/model_wrappers/taps_model_wrapper.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|