MTL IBP
MTLIBPModelWrapper
Bases: CTRAINWrapper
Wrapper class for training models using MTL-IBP method. For details, see De Palma et al. (2024) Expressive Losses for Verified Robustness via Convex Combinations. https://arxiv.org/pdf/2305.13991
Source code in CTRAIN/model_wrappers/mtl_ibp_model_wrapper.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
__init__(model, input_shape, eps, num_epochs, train_eps_factor=1, optimizer_func=torch.optim.Adam, lr=0.0005, warm_up_epochs=1, ramp_up_epochs=70, lr_decay_factor=0.2, lr_decay_milestones=(80, 90), gradient_clip=10, l1_reg_weight=1e-06, shi_reg_weight=0.5, shi_reg_decay=True, pgd_steps=1, pgd_alpha=10, pgd_restarts=1, pgd_early_stopping=False, pgd_alpha_decay_factor=0.1, pgd_decay_milestones=(), pgd_eps_factor=1, mtl_ibp_alpha=0.5, checkpoint_save_path=None, checkpoint_save_interval=10, bound_opts=dict(conv_mode='patches', relu='adaptive'), device=torch.device('cuda'))
Initializes the MTLIBPModelWrapper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The model to be trained. |
required |
input_shape
|
tuple
|
Shape of the input data. |
required |
eps
|
float
|
Epsilon value describing the perturbation the network should be certifiably robust against. |
required |
num_epochs
|
int
|
Number of epochs for training. |
required |
train_eps_factor
|
float
|
Factor for training epsilon. |
1
|
optimizer_func
|
Optimizer
|
Optimizer function. |
Adam
|
lr
|
float
|
Learning rate. |
0.0005
|
warm_up_epochs
|
int
|
Number of warm-up epochs, i.e. epochs where the model is trained on clean loss. |
1
|
ramp_up_epochs
|
int
|
Number of ramp-up epochs, i.e. epochs where the epsilon is gradually increased to the target train epsilon. |
70
|
lr_decay_factor
|
float
|
Learning rate decay factor. |
0.2
|
lr_decay_milestones
|
tuple
|
Milestones for learning rate decay. |
(80, 90)
|
gradient_clip
|
float
|
Gradient clipping value. |
10
|
l1_reg_weight
|
float
|
L1 regularization weight. |
1e-06
|
shi_reg_weight
|
float
|
Shi regularization weight. |
0.5
|
shi_reg_decay
|
bool
|
Whether to decay Shi regularization during the ramp up phase. |
True
|
pgd_steps
|
int
|
Number of PGD steps for adversrial loss computation. |
1
|
pgd_alpha
|
float
|
PGD step size for adversarial loss calculation. |
10
|
pgd_restarts
|
int
|
Number of PGD restarts for adversarial loss calculation. |
1
|
pgd_early_stopping
|
bool
|
Whether to use early stopping in PGD during adversarial loss calculation. |
False
|
pgd_alpha_decay_factor
|
float
|
PGD alpha decay factor. |
0.1
|
pgd_decay_milestones
|
tuple
|
Milestones for PGD alpha decay. |
()
|
pgd_eps_factor
|
float
|
Factor for PGD epsilon. |
1
|
mtl_ibp_alpha
|
float
|
Alpha value for MTL-IBP, i.e. the trade-off between certified and adversarial loss. |
0.5
|
checkpoint_save_path
|
str
|
Path to save checkpoints. |
None
|
checkpoint_save_interval
|
int
|
Interval for saving checkpoints. |
10
|
bound_opts
|
dict
|
Options for bounding according to the auto_LiRPA documentation. |
dict(conv_mode='patches', relu='adaptive')
|
device
|
device
|
Device to run the training on. |
device('cuda')
|
Source code in CTRAIN/model_wrappers/mtl_ibp_model_wrapper.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
_hpo_runner(config, seed, epochs, train_loader, val_loader, output_dir, cert_eval_samples=1000, include_nat_loss=True, include_adv_loss=True, include_cert_loss=True)
Function called during hyperparameter optimization (HPO) using SMAC3, returns the loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
dict
|
Configuration of hyperparameters. |
required |
seed
|
int
|
Seed used. |
required |
epochs
|
int
|
Number of epochs for training. |
required |
train_loader
|
DataLoader
|
DataLoader for training data. |
required |
val_loader
|
DataLoader
|
DataLoader for validation data. |
required |
output_dir
|
str
|
Directory to save output. |
required |
cert_eval_samples
|
int
|
Number of samples for certification evaluation. |
1000
|
include_nat_loss
|
bool
|
Whether to include natural loss into HPO loss. |
True
|
include_adv_loss
|
bool
|
Whether to include adversarial loss into HPO loss. |
True
|
include_cert_loss
|
bool
|
Whether to include certification loss into HPO loss. |
True
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
Loss and dictionary of accuracies that is saved as information to the run by SMAC3. |
Source code in CTRAIN/model_wrappers/mtl_ibp_model_wrapper.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
train_model(train_loader, val_loader=None, start_epoch=0, end_epoch=None)
Trains the model using the MTL-IBP method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_loader
|
DataLoader
|
DataLoader for training data. |
required |
val_loader
|
DataLoader
|
DataLoader for validation data. |
None
|
start_epoch
|
int
|
Epoch to start training from. Initialises learning rate and epsilon schedulers accordingly. Defaults to 0. |
0
|
end_epoch
|
int
|
Epoch to prematurely end training at. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
BoundedModule
|
Trained model. |
Source code in CTRAIN/model_wrappers/mtl_ibp_model_wrapper.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|