CTRAIN
CTRAINWrapper
Bases: Module
Wrapper base class for certifiably training models.
Source code in CTRAIN/model_wrappers/model_wrapper.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
__init__(model, eps, input_shape, train_eps_factor=1, lr=0.0005, optimizer_func=torch.optim.Adam, bound_opts=dict(conv_mode='patches', relu='adaptive'), device='cuda', checkpoint_save_path=None, checkpoint_save_interval=10)
Initialize the CTRAINWrapper Base Class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The neural network model to be wrapped. |
required |
eps
|
float
|
The epsilon value for training. |
required |
input_shape
|
tuple
|
The shape of the input tensor. |
required |
train_eps_factor
|
float
|
Factor to scale epsilon during training. Default is 1. |
1
|
lr
|
float
|
Learning rate for the optimizer. Default is 0.0005. |
0.0005
|
optimizer_func
|
Optimizer
|
The optimizer function to use. Default is torch.optim.Adam. |
Adam
|
bound_opts
|
dict
|
Options for bounding the model. Default is {'conv_mode': 'patches', 'relu': 'adaptive'}. |
dict(conv_mode='patches', relu='adaptive')
|
device
|
str or device
|
The device to run the model on. Default is 'cuda'. |
'cuda'
|
checkpoint_save_path
|
str
|
Path to save checkpoints. Default is None. |
None
|
checkpoint_save_interval
|
int
|
Interval to save checkpoints. Default is 10. |
10
|
Attributes:
Name | Type | Description |
---|---|---|
original_model |
Module
|
The original neural network model. |
eps |
float
|
The epsilon value for training. |
train_eps |
float
|
The scaled epsilon value for training. |
device |
device
|
The device to run the model on. |
n_classes |
int
|
The number of classes in the model's output. |
bound_opts |
dict
|
Options for bounding the model. |
bounded_model |
BoundedModule
|
The bounded version of the original model. |
input_shape |
tuple
|
The shape of the input tensor. |
optimizer_func |
Optimizer
|
The optimizer function. |
optimizer |
Optimizer
|
The optimizer instance. |
epoch |
int
|
The current epoch number. |
checkpoint_path |
str
|
Path to save checkpoints. |
Source code in CTRAIN/model_wrappers/model_wrapper.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
eval()
Sets the model to evaluation mode.
This method sets both the original model and the bounded model to evaluation mode. In evaluation mode, certain layers like dropout and batch normalization behave differently compared to training mode, typically affecting the model's performance and predictions.
Source code in CTRAIN/model_wrappers/model_wrapper.py
99 100 101 102 103 104 105 106 107 108 |
|
evaluate(test_loader, test_samples=np.inf, eval_method='ADAPTIVE')
Evaluate the model using the provided test data loader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_loader
|
DataLoader
|
DataLoader containing the test dataset. |
required |
test_samples
|
int
|
Number of test samples to evaluate. Defaults to np.inf. |
inf
|
eval_method
|
str or list
|
The certification method to use. Options are 'IBP', 'CROWN', 'CROWN-IBP', 'ADAPTIVE', or a list of methods (which results in an ADAPTIVE evaluation using these methods). Default is 'ADAPTIVE'. |
'ADAPTIVE'
|
Returns:
Type | Description |
---|---|
Tuple
|
Evaluation results in terms of std_acc, cert_acc and adv_acc. |
Source code in CTRAIN/model_wrappers/model_wrapper.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
evaluate_complete(test_loader, test_samples=np.inf, timeout=1000, no_cores=4, abcrown_batch_size=512)
Evaluate the model using the complete verification tool abCROWN.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_loader
|
DataLoader
|
DataLoader for the test set. |
required |
test_samples
|
int
|
Number of test samples to evaluate. Defaults to np.inf. |
inf
|
timeout
|
int
|
Per-instance timeout for the verification process in seconds. Defaults to 1000. |
1000
|
no_cores
|
int
|
Number of CPU cores to use for verification. Only relevant, if MIP refinement is used in abCROWN. Defaults to 4. |
4
|
abcrown_batch_size
|
int
|
Batch size for abCROWN. Defaults to 512. Decrease, if you run out of memory. |
512
|
Returns:
Type | Description |
---|---|
tuple): A tuple containing: std_acc (float): Standard accuracy of the model on the test set, certified_acc (float): Certified accuracy of the model on the test set and adv_acc (float
|
Adversarial accuracy of the model on the test set. |
Source code in CTRAIN/model_wrappers/model_wrapper.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
forward(x)
Perform a forward pass through the LiRPA model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor to be passed through the model. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Output tensor after passing through the bounded model. |
Source code in CTRAIN/model_wrappers/model_wrapper.py
110 111 112 113 114 115 116 117 118 119 120 |
|
hpo(train_loader, val_loader, budget=5 * 24 * 60 * 60, defaults=dict(), eval_samples=1000, output_dir='./smac_hpo', include_nat_loss=True, include_adv_loss=True, include_cert_loss=True)
Perform hyperparameter optimization (HPO) using SMAC3 for the model. After the method returns, the model will have loaded the best hyperparameters found during the optimization and the according trained weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_loader
|
DataLoader
|
DataLoader for the training dataset. |
required |
val_loader
|
DataLoader
|
DataLoader for the validation dataset. |
required |
budget
|
int
|
Time budget for the HPO process in seconds. Default is 5 days (52460*60). |
5 * 24 * 60 * 60
|
defaults
|
dict
|
Default hyperparameter values. Default is an empty dictionary. |
dict()
|
eval_samples
|
int
|
Number of samples to use for loss computation. Default is 1000. |
1000
|
output_dir
|
str
|
Directory to store HPO results. Default is './smac_hpo'. |
'./smac_hpo'
|
include_nat_loss
|
bool
|
Whether to include natural loss in the optimization. Default is True. |
True
|
include_adv_loss
|
bool
|
Whether to include adversarial loss in the optimization. Default is True. |
True
|
include_cert_loss
|
bool
|
Whether to include certified loss in the optimization. Default is True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
Configuration |
The best hyperparameter configuration found during the optimization. |
Source code in CTRAIN/model_wrappers/model_wrapper.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
load_state_dict(state_dict, strict=True)
Load the state dictionary into the bounded LiRPA model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dict
|
dict
|
A dictionary containing model state parameters. |
required |
strict
|
bool
|
Whether to strictly enforce that the keys
in |
True
|
Returns:
Type | Description |
---|---|
NamedTuple
|
A named tuple with fields |
Source code in CTRAIN/model_wrappers/model_wrapper.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
resume_from_checkpoint(checkpoint_path, train_loader, val_loader=None, end_epoch=None)
Resume training from a given checkpoint.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
checkpoint_path
|
str
|
Path to the checkpoint file. |
required |
train_loader
|
DataLoader
|
DataLoader for the training dataset. |
required |
val_loader
|
DataLoader
|
DataLoader for the validation dataset. Defaults to None. |
None
|
end_epoch
|
int
|
Epoch to prematurely end training at. Defaults to None. |
None
|
Loads the model and optimizer state from the checkpoint, sets the starting epoch, and resumes training from that epoch.
Source code in CTRAIN/model_wrappers/model_wrapper.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
state_dict()
Returns the state dictionary of the LiRPA model.
The state dictionary contains the model parameters and persistent buffers.
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary containing the model's state. |
Source code in CTRAIN/model_wrappers/model_wrapper.py
169 170 171 172 173 174 175 176 177 178 |
|
train()
Sets wrapper into training mode.
This method calls the train
method on both the original_model
and
the bounded_model
to set them into training mode
Source code in CTRAIN/model_wrappers/model_wrapper.py
89 90 91 92 93 94 95 96 97 |
|