CROWN IBP
CrownIBPModelWrapper
Bases: CTRAINWrapper
Wrapper class for training models using CROWN-IBP method. For details, see Zhang et al. (2020) "Towards Stable and Efficient Training of Verifiably Robust Neural Networks". https://arxiv.org/pdf/1906.06316
Source code in CTRAIN/model_wrappers/crown_ibp_model_wrapper.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
__init__(model, input_shape, eps, num_epochs, train_eps_factor=1, optimizer_func=torch.optim.Adam, lr=0.0005, warm_up_epochs=1, ramp_up_epochs=70, lr_decay_factor=0.2, lr_decay_milestones=(80, 90), gradient_clip=10, l1_reg_weight=1e-06, shi_reg_weight=0.5, shi_reg_decay=True, start_kappa=1, end_kappa=0, start_beta=1, end_beta=0, loss_fusion=True, checkpoint_save_path=None, checkpoint_save_interval=10, bound_opts=dict(conv_mode='patches', relu='adaptive'), device=torch.device('cuda'))
Initializes the CrownIBPModelWrapper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The model to be trained. |
required |
input_shape
|
tuple
|
Shape of the input data. |
required |
eps
|
float
|
Epsilon value describing the perturbation the network should be certifiably robust against. |
required |
num_epochs
|
int
|
Number of epochs for training. |
required |
train_eps_factor
|
float
|
Factor for training epsilon. |
1
|
optimizer_func
|
Optimizer
|
Optimizer function. |
Adam
|
lr
|
float
|
Learning rate. |
0.0005
|
warm_up_epochs
|
int
|
Number of warm-up epochs, i.e. epochs where the model is trained on clean loss. |
1
|
ramp_up_epochs
|
int
|
Number of ramp-up epochs, i.e. epochs where the epsilon is gradually increased to the target train epsilon. |
70
|
lr_decay_factor
|
float
|
Learning rate decay factor. |
0.2
|
lr_decay_milestones
|
tuple
|
Milestones for learning rate decay. |
(80, 90)
|
gradient_clip
|
float
|
Gradient clipping value. |
10
|
l1_reg_weight
|
float
|
L1 regularization weight. |
1e-06
|
shi_reg_weight
|
float
|
Shi regularization weight. |
0.5
|
shi_reg_decay
|
bool
|
Whether to decay Shi regularization during the ramp up phase. |
True
|
start_kappa
|
float
|
Starting value of kappa that trades-off IBP and clean loss. |
1
|
end_kappa
|
float
|
Ending value of kappa. |
0
|
start_beta
|
float
|
Starting value of beta that trades off IBP and CROWN-IBP loss. |
1
|
end_beta
|
float
|
Ending value of beta. |
0
|
loss_fusion
|
bool
|
Whether to use loss fusion in loss calculation (saves memory). |
True
|
checkpoint_save_path
|
str
|
Path to save checkpoints. |
None
|
checkpoint_save_interval
|
int
|
Interval for saving checkpoints. |
10
|
bound_opts
|
dict
|
Options for bounding according to the auto_LiRPA documentation. |
dict(conv_mode='patches', relu='adaptive')
|
device
|
device
|
Device to run the training on. |
device('cuda')
|
Source code in CTRAIN/model_wrappers/crown_ibp_model_wrapper.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
eval()
Sets the model to evaluation mode.
This method sets both the original model and the bounded model to evaluation mode. In evaluation mode, certain layers like dropout and batch normalization behave differently compared to training mode, typically affecting the model's performance and predictions.
Source code in CTRAIN/model_wrappers/crown_ibp_model_wrapper.py
95 96 97 98 99 100 101 102 103 104 105 106 |
|
train()
Sets wrapper into training mode.
This method calls the train
method on both the original_model
and
the bounded_model
to set them into training mode
Source code in CTRAIN/model_wrappers/crown_ibp_model_wrapper.py
83 84 85 86 87 88 89 90 91 92 93 |
|
train_model(train_loader, val_loader=None, start_epoch=0, end_epoch=None)
Trains the model using the CROWN-IBP method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_loader
|
DataLoader
|
DataLoader for training data. |
required |
val_loader
|
DataLoader
|
DataLoader for validation data. |
None
|
start_epoch
|
int
|
Epoch to start training from. Initialises learning rate and epsilon schedulers accordingly. Defaults to 0. |
0
|
end_epoch
|
int
|
Epoch to prematurely end training at. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
BoundedModule
|
Trained model. |
Source code in CTRAIN/model_wrappers/crown_ibp_model_wrapper.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|